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LETTER TO THE EDITOR 

Application of the theory of Hill’s equation to the study of the 
stability of periodic classical orbits 

A R Edmonds 
Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, U K  

Received 11 April 1989 

Abstract. The theory of Hill’s equation is applied to periodic orbits in a classical model 
of the magnetic hydrogen atom. it is shown how an infinite Hill determinant may be 
approximated and computed, thus giving the discriminant of the relevant Whittaker-Hill 
equation. This discriminant supplies information on the stability of the above periodic 
orbits which is much more easily obtained than by the numerical integrations of the orbits 
appearing in previous publications. The method is also applicable to other classical systems 
of current interest. 

The stability of periodic orbits in the classical diamagnetic Kepler problem is important 
in the discussion of the transition from regular to chaotic motion, and of the relation 
between classical and quantum mechanical descriptions of the system. A number of 
studies have appeared recently which present the results of calculation of the stability 
of some of these orbits (Wintgen 1987, AI Laithy and Farmer 1987, Schweitzer et a1 
1988). These computations involved laborious numerical integrations of the orbits. 
However, results may be obtained in a much more elegant and economical fashion by 
means of the standard theory of Hill’s equation. This method may also be applied to 
the study of periodic orbits in other Hamiltonian systems (e.g. the HCnon-Heiles system 
and x2y2 potential). 

With a Larmor frame and the choice of L, = 0 we have, in scaled units of position 
and momentum, 

f (p f :+p :+x2- l / r )=  E 

dp,/dt = -x - x/2r3 dp,/dt = -z/2r3 
where px = dx/dt  and pL = dzldt. The scaled energy E is identical with that used by 
the authors referred to above. 

The singularity at the origin is removed by regularisation (see Szebehely 1967, 
Edmonds 1972) which introduces new coordinates U and U and a new ‘time’ T :  

dt1d.r = 4r. 2 2  x = u  - U  z = 2uu 
The new ‘energy’ equation (where the ‘energy’ is identically equal to 2) is 

&(p i  + p i )  -4(u2+ u2)E +8(u2+  tr2)uZu2 = 2 

with the system of ODE 

~ ~ , / ~ T - ~ E u + ~ ~ u I J ~ ( ~ u ~ + v ~ ) = O  

d p , / d ~  - ~ E u  + 16u2u( U’+ 2 ~ ’ )  = 0 

pu = du/d.r pu = dv/dr. 
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Consider motion near the z axis with E <O, using the regularised equations as 
above. (cf Pullen 1981.) We suppose lulmax = E. Then 

Take the solution of the first equation as U = u ,cosR~ ,  where RZ=81EI. The energy 
equation gives uo = 2/R + O( E ) .  

U“+ 8)Elu +O(E ’ )  = 0 u”+(81EI+ ~ ~ u ~ ) u + O ( E ~ )  = 0. 

Then 
U”+ [a’ + 96/R4 + ( 128/R4) COS 2RT + (32/R4) COS 4fiT]U = 0 

in this approximation. 
This is the Whittaker-Hill equation (see Magnus and Winkler 1966) and was 

obtained by Edmonds (unpublished; see Pullen 1981); in the original work, use was 
made of a numerical tabulation of the regions of stability of the Whittaker-Hill equation 
by Klotter and Kotowski (1943). These data only covered a small range of the energy 
E, although the transition at E = -0.39 was predicted. 

Many of the properties of the solutions of Hill’s equation (the general case of a 
second-order linear differential equation with a periodic coefficient) are contained in 
the discriminant A, which is an analytic function of the Fourier coefficients of the 
periodic term. In our case the discriminant is given by 

A( A )  = 2 - 4 sin2( m/A/2)CO(A )So(A) 

where v = -16E3 ( E  < 0), A = 1 + 3 /  U and CO, So are five-diagonal semi-infinite deter- 
minants with (apart from the first three rows) the elements of the nth row having 
non-zero values 1/2d,, 2/d,, 1,  2/d,, 1/2d,, where 

d, = 3-(4n2 - 1 ) u .  

CO and So may be obtained quickly by exponential (Richardson) extrapolation in 
l /n ,  of a few truncated subdeterminants of dimension n,; the process is governed by 
the value of n for which d, is nearest to 0. The size of determinant needed increases 
as E approaches 0. In the calculations reported here, the maximum dimension used 
was 810. The banded structure of the truncated determinants CO and So permits the 
use of Wilkinson’s efficient program BANDETl (see Martin and Wilkinson 1967). 
The calculations were programmed in Lightspeed Pascal and executed on an Apple 
Macintosh computer. 

Consideration of the Hill theory leads us to replace the variable E by 

p =&l-3/ (16E3)]”2  

see figure 1 .  

i 

0 

-0.2 

-0.4 
E 

-0.6 

-0.8 

-1.0 
0 2 4 6 a 

P 

Figure 1. A plot of energy E against *. 
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Figure 2. The discriminant A plotted as a function of p for E = -1,.  . . , -0.09. 
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Figure 3. The discriminant A plotted as a function of /A for E = -0.031,. . . , -0.027. 

For all but small values of p (corresponding to large negative E)  A is very close 
to a ( p ) c o s  ( b p + c )  where a ( p )  varies slowly with p, and b and c are effectively 
constant (see figures 2 and 3). This result may be compared with other results in 
bifurcation theory (see Feigenbaum 1978, Bountis 1981) since the Feigenbaum ratio 
for p as p increases (and also for E more slowly as E tends to 0) goes rapidly to unity. 

Regions of stability are given by IAl< 2, the regions of instability by /A1 > 2. The 
Lyapunov exponent for unstable regions is p = (1/7r) cosh-'(A/2) (see figure 4). 
Calculations of E values bounding stable regions agree with those obtained by Wintgen 
and others and have been extended close to E = O .  The residue R computed by A1 
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Figure 4. The Lyapunov exponent p plotted against p for E = -1.0,. . . , -0.09. 
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Laithy is essentially 2 -A2; it corresponds to the mapping T on the surface of section 
whereas A is related to the mapping J T  (cf the review by Greene 1979). The use of 
the theory of Hill’s equation gives reliable results with less computing than other 
methods and may be extended to other periodic orbits of the H atom; however, we 
may not always have the advantage of banded determinants. For planar orbits an 
elliptic function complicates the problem and in any case we know already that there 
is only one region of stability and one of instability; the transition is at E = -0.127. 

The above method of studying periodic orbits may be applied to other cases. The 
similar system with a non-linear term x2y2  in the potential studied by Pullen and 
Edmonds (1981) and Meyer (1986) gives rise to a Mathieu equation in place of a 
Whittaker-Hill equation. The well known HCnon-Heiles system is more complicated 
since elliptic functions and a non-linear form of Hill’s equation appear. 
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